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Abstract
Two mesoscopic SQUID rings which are far from each other are considered.
A source of two-mode nonclassical microwaves irradiates the two rings with
correlated photons. The Josephson currents are in this case quantum mechanical
operators, and their expectation values with respect to the density matrix of the
microwaves yield the experimentally observed currents. Classically correlated
(separable) and quantum mechanically correlated (entangled) microwaves are
considered, and their effect on the Josephson currents is quantified. Results for
two different examples that involve microwaves in number states and coherent
states are derived. It is shown that the quantum statistics of the tunnelling
electron pairs through the Josephson junctions in the two rings are correlated.

1. Introduction

Superconducting quantum interference devices (SQUIDs) exhibit quantum coherence at the
macroscopic level [1]. This is a major research field within condensed matter, and has potential
applications in the developing area of quantum information processing [2, 3]. A lot of the work
on superconducting rings investigates their interaction with classical electromagnetic fields.

In the last twenty years nonclassical electromagnetic fields at low temperatures (kBT �
h̄ω) have been studied extensively theoretically and experimentally [4] at both optical and
microwave frequencies [5]. They are carefully prepared in a particular quantum state, which
is described mathematically with a density matrix ρ. The interaction of SQUID rings with
nonclassical microwaves has been studied in the literature [6, 7]. In this case the full system,
device and microwaves, is quantum mechanical and displays interesting quantum behaviour.
For example, the quantum noise in the nonclassical microwaves affects the Josephson currents.
Experimental work which involves the interaction of a Josephson device with a single photon
has been reported in [8].

An important feature of two-mode nonclassical microwaves is entanglement. Entangled
electromagnetic fields have been produced experimentally [9]. There is currently a lot of
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Figure 1. Two distant mesoscopic SQUID rings A and B are irradiated with nonclassical
microwaves of frequencies ω1 and ω2, respectively. The microwaves are produced by the source
SEM and are correlated. Classical magnetic fluxes VAt and VBt are also threading the two rings A
and B, respectively.

work on the classification of correlated two-mode electromagnetic fields into classically
correlated (separable) and quantum mechanically correlated (entangled) [10]. In a previous
publication [11] we have studied the effects of entangled electromagnetic fields on distant
electron interference experiments. The interaction of entangled electromagnetic fields with
two superconducting charge qubits (approximated with two-level systems) has been studied
recently in [12]. In that work it has been shown that the entanglement is transferred from the
photons to the superconducting charge qubits. Related work has also been reported in [13]. In
this paper we study the effects of entangled electromagnetic fields on the Josephson currents
of distant SQUID rings.

We consider two mesoscopic SQUID rings, which are far from each other (figure 1). They
are irradiated with entangled microwaves, produced by a single source. In this case the phase
differences across the Josephson junctions are quantum mechanical operators. Consequently
the quantum currents,which are sinusoidal functions of the phase differences,are also operators
and their expectation values with respect to the density matrix of the microwaves give the
observed Josephson currents. It is shown that for entangled microwaves the currents in the two
distant SQUID rings are correlated. We consider suitable examples of separable and entangled
microwaves, which differ only by nondiagonal elements; and we show that the correlations
between the induced Josephson currents are sensitive to these nondiagonal elements.

In section 2 we consider a single SQUID ring and study its interaction with nonclassical
microwaves. We assume the external field approximation, where the electromagnetic field
created by the Josephson current (back reaction) is neglected. We also consider mesoscopic
rings which are small in comparison to the wavelength of the microwaves. It is shown that
under these assumptions the Josephson current is proportional to the imaginary part of the
Weyl function of the nonclassical microwaves.

In section 3 we analyse the experiment depicted in figure 1,where two distant SQUID rings
are irradiated with entangled microwaves. We present examples of separable and entangled
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microwaves that involve number states (section 4) and coherent states (section 5). In section 6
we present numerical calculations for these examples. In section 7 we conclude with a
discussion of our results.

2. Interaction of a single SQUID ring with nonclassical microwaves

In this section we consider a single SQUID ring and study its interaction with both classical
and nonclassical microwaves.

2.1. Classical microwaves

The current is IA = I1 sin θA, where θA = 2e�A is the phase difference across the junction
due to the total flux �A through the ring. In the external field approximation, �A is simply
the externally applied flux, while the back reaction (i.e., the flux induced by the SQUID ring
current) is neglected. In other words the flux LIA, where L is the self-inductance of the ring,
is assumed to be much smaller than the external flux �A. We consider a magnetic flux with a
linear and a sinusoidal component:

�A = VAt + φA, φA = A sin(ω1t). (1)

In this case the current is

IA = I1 sin[ωAt + 2eA sin(ω1t)], ωA = 2eVA. (2)

2.2. Nonclassical microwaves

In this subsection we consider nonclassical electromagnetic fields,which are carefully prepared
in a particular quantum state and are described by a density matrix ρ. In this case, not only
are the average values 〈E〉, 〈B〉 of the electric and magnetic fields known, but so also are the
standard deviations �E,�B (and their higher moments).

A particular example is coherent versus squeezed microwaves. In both cases the average
values 〈E〉, 〈B〉 are sinusoidal functions of time, that can be made equal for suitable values of
the parameters. However, the uncertainties are �E = �B = 2−1/2 for coherent microwaves;
and �E = σ−12−1/2,�B = σ2−1/2, for squeezed microwaves (where σ is the squeezing
parameter).

Another way of describing nonclassical electromagnetic fields is through the photon
counting distribution PN = 〈N |ρ|N〉. For example, in the case of coherent and squeezed
microwaves the distribution PN is Poissonian and sub-Poissonian, respectively. One of our
aims in this paper is to study how the quantum noise in the nonclassical fields, quantified by
�E,�B , or with the distribution PN , affects the Josephson currents.

In quantized electromagnetic fields the vector potential Ai and the electric field Ei are
dual quantum variables (operators). Strictly speaking the dual quantum variables should be
local quantities, but we consider mesoscopic SQUID rings which are much smaller than the
wavelength of the microwaves. Therefore we can integrate these quantities over the SQUID
ring and obtain the magnetic flux and the electromotive force:

φ̂ =
∮

C
Ai dxi, V̂EMF =

∮
C

Ei dxi . (3)

As explained above we work in the external field approximation and we neglect the back
reaction flux from the electron pairs on the external microwaves. In this case the flux operator
evolves as

φ̂(t) = ξ√
2

[â† exp(iωt) + â exp(−iωt)], (4)
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where ξ is a parameter proportional to the area of the SQUID ring and the â†, â are the photon
creation and annihilation operators (e.g., [4, 6]).

In order to go beyond the external field approximation we need to consider the Hamiltonian

H = ω(â†â + 1
2 ) + HSQUID + Hint, (5)

where HSQUID is the SQUID Hamiltonian and Hint is the term for interaction between the
SQUID and the microwaves. In this case the flux operator φ̂′(t) evolves as

φ̂′(t) = exp(iH t)φ̂(0) exp(−iH t)

= φ̂(t) + · · · . (6)

In this paper we work in the external field approximation and consider the flux operator of
equation (4).

Consequently the phase difference θA is the operator

θ̂A = ωAt + q[â† exp(iωt) + â exp(−iωt)], q = √
2eξ; (7)

and the current also becomes an operator,

ÎA = I1 sin{ωAt + q[â† exp(iωt) + â exp(−iωt)]}. (8)

Expectation values of the current are calculated by taking its trace with respect to the
density matrix ρ, which describes the nonclassical electromagnetic fields,

〈 ÎA〉 = Tr(ρ ÎA) = I1 Im[exp(iωAt)W̃ (λA)], (9)

λA = iq exp(iω1t). (10)

Here W̃ (x) is the Weyl function [14] which is defined in terms of the displacement operator
D(x) as

W̃ (x) = Tr[ρD(x)]; D(x) = exp(xâ† − x∗â). (11)

The tilde in the notation of the Weyl function indicates that it is the two-dimensional Fourier
transform of the Wigner function.

In a similar way we can calculate the 〈 Î 2
A〉 = Tr(ρ Î 2

A). The second (and higher) moments of
the current describe the quantum statistics of the electron pairs tunnelling through the Josephson
junctions. As explained earlier, nonclassical electromagnetic fields are characterized by the
photon counting distribution PN = 〈N |ρ|N〉. The statistics of the photons threading the ring
affects the statistics of the tunnelling electron pairs, which is quantified with the 〈 Î 2

A〉, 〈 Î 3
A〉 etc.

3. Interaction of two distant SQUID rings with entangled microwaves

In this section we consider two SQUID rings far apart from each other, which we refer to as A
and B (figure 1). They are irradiated with microwaves which are produced by the same source
and are correlated. Let ρ be the density matrix of the microwaves and

ρA = TrB ρ, ρB = TrA ρ, (12)

the density matrices of the microwaves interacting with the two SQUID rings A, B, respectively.
When the density matrix ρ is factorizable as ρfact = ρA ⊗ρB the two modes are not correlated.
If it can be written as ρsep = ∑

i piρAi ⊗ ρBi , where pi are probabilities, it is called separable
and the two modes are classically correlated. Density matrices which cannot be written in one
of these two forms are entangled (quantum mechanically correlated). There has been a lot of
work on criteria which distinguish separable and entangled states [10].
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The currents in the two SQUIDs are

〈 ÎA〉 = I1 Tr(ρA sin θ̂A), (13)

〈 ÎB〉 = I2 Tr(ρB sin θ̂B). (14)

The 〈 ÎA〉 is written in terms of the Weyl function W̃ (λA) in equation (9), and similarly for B
one may obtain 〈 ÎB〉 = I2 Im[exp(iωBt)W̃ (λB)], where λB = iq exp(iω2t) and ωB = 2eVB.

The expectation value of the product of the two current operators is given by

〈 ÎA ÎB〉 = I1 I2 Tr(ρ sin θ̂A sin θ̂B). (15)

We consider the ratio of the currents

R = 〈 ÎA ÎB〉
〈 ÎA〉〈 ÎB〉 . (16)

For factorizable density matrices ρfact = ρA ⊗ ρB we easily see that Rfact = 1. For separable
density matrices ρsep = ∑

i piρAi ⊗ ρBi we get

Rsep =
∑

i pi〈 ÎAi 〉〈 ÎBi 〉
(
∑

k pk〈 ÎAk〉)(∑l pl〈 ÎBl〉)
. (17)

We also calculate the second moments

〈 Î 2
A〉 = I 2

1 Tr[ρA(sin θ̂A)2], (18)

〈 Î 2
B〉 = I 2

2 Tr[ρB(sin θ̂B)2]. (19)

As explained earlier, the statistics of the photons threading the ring affects the statistics of the
tunnelling electron pairs, which is quantified with the 〈 ÎA ÎB〉, 〈 Î 2

A〉, 〈 Î 2
B〉 etc.

In the following sections we consider particular examples for the density matrix ρ of the
nonclassical microwaves that interact with the two SQUID rings, and examine its effect on
these quantities.

4. Microwaves in number states

We consider microwaves in the separable (mixed) state

ρsep = 1
2 (|N1 N2〉〈N1 N2| + |N2 N1〉〈N2 N1|), (20)

where N1 �= N2. We also consider microwaves in the entangled state |s〉 = 2−1/2(|N1 N2〉 +
|N2 N1〉), which is a pure state. The density matrix of |s〉 is

ρent = ρsep + 1
2 (|N1 N2〉〈N2 N1| + |N2 N1〉〈N1 N2|), (21)

where the ρsep is given by equation (20). It is seen that the ρent and the ρsep differ only by the
above nondiagonal elements, and below we calculate their effect on the Josephson currents.

We note that it is possible to have ‘interpolating’ density matrices of the form

ρp = pρsep + (1 − p)ρent

= ρsep +
1 − p

2
(|N1 N2〉〈N2 N1| + |N2 N1〉〈N1 N2|) (22)

where 0 � p � 1. Below we present results for the two extreme cases of ρsep, where the
nondiagonal terms make no contribution; and for the ρent, where the nondiagonal terms make
maximal contribution. We also present numerical results for the case of ρp.

In this example, the reduced density matrices are the same for the separable and entangled
states:

ρsep,A = ρent,A = ρsep,B = ρent,B

= 1
2 (|N1〉〈N1| + |N2〉〈N2|). (23)

Consequently in this example 〈 ÎA〉sep = 〈 ÎA〉ent and also 〈 ÎB〉sep = 〈 ÎB〉ent.
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4.1. Classically correlated photons

For the density matrix ρsep of equation (20) we find

〈 ÎA〉 = I1C sin(ωAt); (24)

〈 ÎB〉 = I2C sin(ωBt); (25)

C = 1

2
exp

(
−q2

2

)
[L N1(q

2) + L N2(q
2)], (26)

where the Lα
n (x) are Laguerre polynomials (in the case of equation (26) we have α = 0). The

currents 〈 ÎA〉, 〈 ÎB〉 are in this case independent of the microwave frequencies ω1, ω2.
The expectation value of the product of the two currents (equation (15)) is

〈 ÎA ÎB〉sep = I1 I2C1 sin(ωAt) sin(ωBt), (27)

C1 = exp(−q2)L N1(q
2)L N2(q

2). (28)

Consequently the ratio R of equation (16) is

Rsep = C1

C2
= 4L N1(q

2)L N2 (q
2)

[L N1(q2) + L N2(q2)]2
. (29)

In this example the Rsep is time independent.
The moments of the currents, defined by equations (18), (19), are also calculated:

〈 Î 2
A〉 = I 2

1

2
[1 − C2 cos(2ωAt)], (30)

〈 Î 2
B〉 = I 2

2

2
[1 − C2 cos(2ωBt)], (31)

C2 = 1
2 exp(−2q2)[L N1(4q2) + L N2(4q2)]. (32)

4.2. Quantum mechanically correlated photons

For the case of ρent the reduced density matrices ρA, ρB are those given by equation (23), and
consequently the 〈 ÎA〉, 〈 ÎB〉 are the same as in equations (24), (25); and the 〈 Î 2

A〉, 〈 Î 2
B〉 are the

same as in equations (30), (31).
However, in this case the 〈 ÎA ÎB〉 is

〈 ÎA ÎB〉ent = 〈 ÎA ÎB〉sep + Icross, (33)

where

Icross = −I1 I2C3 cos[(N1 − N2)(ω1 − ω2)t]

× [cos(ωAt + ωBt) − (−1)N1−N2 cos(ωAt − ωBt)], (34)

C3 = 1
2 exp(−q2)L N2−N1

N1
(q2)L N1−N2

N2
(q2). (35)

The term Icross is induced by the nondiagonal elements of ρent, and depends on the photon
frequencies ω1, ω2. This term quantifies the difference between the effect of separable and
entangled microwaves on the Josephson currents. We note that the nondiagonal terms of
ρent (equation (21)) are small and consequently they are very sensitive to the back reaction.
Therefore our results which neglect the back reaction are relevant to experiments with small
Josephson currents. In other words it is required that the fluxes LA IA and LB IB be much
smaller than the external flux.

The ratio R of equation (16) can be simplified into two distinct expressions according to
whether the difference N1 − N2 is even or odd. In the case N1 − N2 = 2k, the ratio is

R(2k)
ent = Rsep +

4L−2k
N1

(q2)L2k
N2

(q2)

[L N1(q2) + L N2(q2)]2
cos(�t), (36)
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where

� = (N1 − N2)(ω1 − ω2). (37)

It is seen that the R(2k)
ent oscillates around the Rsep with frequency � given by equation (37). If

there is no detuning between the nonclassical electromagnetic fields, i.e. ω1 = ω2, then R(2k)
ent

is constant, although it is still the case that Rent �= Rsep.
In the case N1 − N2 = 2k + 1 the ratio is

R(2k+1)
ent = Rsep − 4L−2k−1

N1
(q2)L2k+1

N2
(q2)

[L N1(q2) + L N2(q2)]2

cos(�t)

tan(ωAt) tan(ωBt)
. (38)

In both cases the Rent is time dependent and it is a function of the photon frequencies ω1, ω2,
in contrast to the case for Rsep (which is time independent).

5. Microwaves in coherent states

We consider microwaves in the classically correlated state

ρsep = 1
2 (|A1 A2〉〈A1 A2| + |A2 A1〉〈A2 A1|). (39)

The |A1〉, |A2〉 are microwave coherent states (eigenstates of the annihilation operators). We
also consider the entangled state |u〉 = N (|A1 A2〉 + |A2 A1〉), with density matrix

ρent = 2N 2ρsep + N 2(|A1 A2〉〈A2 A1| + |A2 A1〉〈A1 A2|), (40)

where the normalization constant is given by

N = [2 + 2 exp(−|A1 − A2|2)]−1/2. (41)

5.1. Classically correlated photons

For microwaves in the separable state of equation (39) the reduced density matrices are

ρsep,A = ρsep,B = 1
2 (|A1〉〈A1| + |A2〉〈A2|), (42)

and hence the currents in A and B are

〈 ÎA〉sep = I1

2
exp

(
−q2

2

)
{sin[ωAt + 2q|A1| cos(ω1t − θ1)]

+ sin[ωAt + 2q|A2| cos(ω1t − θ2)]}, (43)

〈 ÎB〉sep = I2

2
exp

(
−q2

2

)
{sin[ωBt + 2q|A1| cos(ω2t − θ1)]

+ sin[ωBt + 2q|A2| cos(ω2t − θ2)]}, (44)

where θ1 = arg(A1) and θ2 = arg(A2). We have also calculated numerically the ratio Rsep.

5.2. Quantum mechanically correlated photons

For microwaves in the entangled state of equation (40) the reduced density matrices are

ρent,A = ρent,B = N 2(|A1〉〈A1| + |A2〉〈A2| + τ |A1〉〈A2| + τ ∗|A2〉〈A1|), (45)

where

τ = 〈A1|A2〉 = exp

(
−|A1|2

2
− |A2|2

2
+ A∗

1 A2

)
. (46)
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The current in A is

〈 ÎA〉ent = 2N 2〈 ÎA〉sep + N 2 E F1 exp

(
−q2

2

)
I1, (47)

where

E = exp[−|A1|2 − |A2|2 + 2|A1 A2| cos(θ1 − θ2)], (48)

F1 = {exp[q|A1|SA,1(t) − q|A2|SA,2(t)] + exp[−q|A1|SA,1(t) + q|A2|SA,2(t)]}
× sin[ωAt + q|A1|CA,1(t) + q|A2|CA,2(t)], (49)

and

SA,1 = sin(ω1t − θ1), SA,2 = sin(ω1t − θ2),

CA,1 = cos(ω1t − θ1), CA,2 = cos(ω1t − θ2).
(50)

The current in B is

〈 ÎB〉ent = 2N 2〈 ÎB〉sep + N 2 E F2 exp

(
−q2

2

)
I2, (51)

where

F2 = {exp[q|A1|SB,1(t) − q|A2|SB,2(t)] + exp[−q|A1|SB,1(t) + q|A2|SB,2(t)]}
× sin[ωBt + q|A1|CB,1(t) + q|A2|CB,2(t)], (52)

and

SB,1 = sin(ω2t − θ1), SB,2 = sin(ω2t − θ2),

CB,1 = cos(ω2t − θ1), CB,2 = cos(ω2t − θ2).
(53)

We have also calculated numerically the ratio Rent.
As we already explained, the nondiagonal terms in ρent are very sensitive to back reaction

and therefore these results are relevant to experiments with small Josephson currents. In other
words it is required that the fluxes LA IA and LB IB be much smaller than the external flux.

6. Numerical results

In all numerical results of figures 2–6 the microwave frequencies are ω1 = 1.2 × 10−4, ω2 =
10−4, in units where kB = h̄ = c = 1. The critical currents are I1 = I2 = 1. The other
parameters are ξ = 1, ωA = ω1, ωB = ω2, N1 = 2, N2 = 0 and the arguments of the coherent
eigenstates are θ1 = θ2 = 0. For a meaningful comparison between microwaves in number
states and microwaves in coherent states, we take |A1|2 = N1 and |A2|2 = N2, so that the
average number of photons in the coherent states is equal to the number of photons in the
number states.

In figure 2 we plot Rsep against (ω1 − ω2)t for currents induced by microwaves in the
number state of equation (20) with N1 = 2, N2 = 0 (line of circles) and the coherent state
of equation (39) with A1 = √

2, A2 = 0 (solid line). It is seen that two different microwave
states with the same average number of photons give different results on the quantum statistics
of the electron pairs.

In figure 3 we plot Rsep − Rent against (ω1 −ω2)t for currents induced by microwaves in (a)
the number states of equations (20) and (21) with N1 = 2, N2 = 0 and (b) the coherent states
of equations (39) and (40) with A1 = √

2, A2 = 0. It is seen that the separable and entangled
states, which differ only by nondiagonal elements, give different results. As expected, the
difference (which shows the effect of the nondiagonal elements) is small, but it is nonzero.
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Figure 2. Rsep against (ω1 −ω2)t for the number state of equation (20) with N1 = 2, N2 = 0 (line
of circles) and the coherent state of equation (39) with A1 = √

2, A2 = 0 (solid line). The photon
frequencies are ω1 = 1.2 × 10−4 and ω2 = 10−4, in units where kB = h̄ = c = 1.
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Figure 3. Rsep − Rent against (ω1 − ω2)t for (a) number states of equations (20) and (21) with
N1 = 2, N2 = 0 and (b) coherent states of equations (39) and (40) with A1 = √

2, A2 = 0. The
photon frequencies are ω1 = 1.2 × 10−4 and ω2 = 10−4, in units where kB = h̄ = c = 1.

In figure 4 we plot (a) 〈 ÎA〉sep − 〈 ÎA〉ent and (b) 〈 Î 2
A〉sep − 〈 Î 2

A〉ent, against (ω1 − ω2)t
for microwaves in the coherent state ρA,sep of equation (42) and ρA,ent of equation (45) with
A1 = √

2, A2 = 0. For coherent states ρent,A is not equal to ρsep,A (cf equations (45), (42))
and consequently the corresponding currents are different. For number states, the currents
corresponding to ρent,A and ρsep,A are the same because ρent,A = ρsep,A (cf equation (23)).

In figure 5 we plot 〈 ÎA ÎB〉sep − 〈 ÎA ÎB〉ent for (a) number states of equations (20) and (21)
with N1 = 2, N2 = 0 and (b) coherent states of equations (39) and (40) with A1 = √

2, A2 = 0,
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2, A2 = 0. The photon frequencies
are ω1 = 1.2 × 10−4 and ω2 = 10−4, in units where kB = h̄ = c = 1.
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Figure 5. 〈 ÎA ÎB〉sep −〈 ÎA ÎB〉ent for (a) number states of equations (20) and (21) with N1 = 2, N2 =
0 and (b) coherent states of equations (39) and (40) with A1 = √

2, A2 = 0, against (ω1 − ω2)t .
The photon frequencies are ω1 = 1.2 × 10−4 and ω2 = 10−4, in units where kB = h̄ = c = 1.

against (ω1 −ω2)t . In this figure also, we get different results due to the nondiagonal elements
in the entangled state.

In figure 6 we plot the ratio Rp of equation (16) against p ∈ [0, 1] for currents that
are induced by the interpolating density matrix ρp of equation (22) for number states with
N1 = 2, N2 = 0. The time t has been fixed so that (ω1 − ω2)t = π/2.
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Figure 6. Rp against p for currents that are induced by the interpolating density matrix ρp of
equation (22) for number states with N1 = 2, N2 = 0. The time t has been fixed so that
(ω1 − ω2)t = π/2. The photon frequencies are ω1 = 1.2 × 10−4 and ω2 = 10−4, in units
where kB = h̄ = c = 1.

7. Discussion

We have considered the interaction of SQUID rings with nonclassical microwaves. We have
assumed the external field approximation, where the electromagnetic field created by the
Josephson currents (back reaction) is neglected. We have also considered small rings in
comparison to the wavelength of the microwaves and taken as dual quantum variables the
magnetic flux and electromotive force of equation (3).

The Josephson current is an operator and its expectation value with respect to the density
matrix of the nonclassical microwaves is the observed current. We have shown that the
expectation value of the current is proportional to the imaginary part of the Weyl function
(equation (9)). This shows clearly how the full density matrix of the microwaves affects the
Josephson current. The higher moments of the current 〈 Î M

A 〉 can also be calculated and used
to quantify the statistics of the tunnelling electron pairs. It has been shown that the statistics
of the irradiating photons determines the tunnelling statistics of the electron pairs.

We have also considered the interaction of two distant SQUID rings A and B with two-
mode nonclassical microwaves, which are produced by the same source. It has been shown that
classically correlated (separable) and quantum mechanically correlated (entangled) photons
induce different Josephson currents and different tunnelling statistics in the two devices.
The results show that the entangled photons produce entangled Josephson currents in the
distant SQUID rings. This can have applications in the general area of quantum information
processing.

The work can be extended in various directions. The first is to take into account the
back reaction and include the extra terms which we have neglected in equation (6). This
can be done numerically. The second direction is the study of Bell-like inequalities for the
Josephson currents, which are violated when the currents are entangled. Another direction is
the potential use of the system as a detector of entangled photons. There is a lot of work on the
use of mesoscopic devices as detectors [15]. Application of the present work in this direction
requires further work, which could lead to the development of a detection system for entangled
photons based on two distant SQUID rings.
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